Methodologies for Fake News Detection using Natural Language Processing and Machine Learning

  • Unique Paper ID: 157063
  • Volume: 9
  • Issue: 5
  • PageNo: 775-782
  • Abstract:
  • Having easy access to the internet and an intuitive user interface has made e-reader’s growth extremely tremendous. These led to the gradual increase of fake news activity over social media and other websites. Using NLP an expeditiously emerging method of detecting fake content with help of machine learning algorithms is done. As part of this paper, we provide a recapitulation of the methods for collecting and classifying fake news, as well as a discussion of future directions for research in this area. In this experiment, data preprocessing is a first step, where data is created and transformed in a format used to model training. That preprocessed data is then programmed for feature extraction. Next a pipeline is created for all ML algorithms namely, Naive Bayes, SVM, Logistic Regression, KNN, LGBM Classifier, Random Forest. An analysis of all algorithms' performance is conducted in a comparative study. Detailed analyses of each model are provided, with an emphasis on its performance. According to our experiment, Random Forest is an overfitted model for this purpose. With an accuracy of 99.09%, the SVM classifier performs best followed by the LGBM classifier with a 99.79% accuracy.
add_icon3email to a friend

Copyright & License

Copyright © 2025 Authors retain the copyright of this article. This article is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

BibTeX

@article{157063,
        author = {Shamla Mantri and Gayatri Gattani and Sarvesh Dhapte and Yash Jain},
        title = {Methodologies for Fake News Detection using Natural Language Processing and Machine Learning},
        journal = {International Journal of Innovative Research in Technology},
        year = {},
        volume = {9},
        number = {5},
        pages = {775-782},
        issn = {2349-6002},
        url = {https://ijirt.org/article?manuscript=157063},
        abstract = {Having easy access to the internet and an intuitive user interface has made e-reader’s growth extremely tremendous. These led to the gradual increase of fake news activity over social media and other websites. Using NLP an expeditiously emerging method of detecting fake content with help of machine learning algorithms is done. As part of this paper, we provide a recapitulation of the methods for collecting and classifying fake news, as well as a discussion of future directions for research in this area. In this experiment, data preprocessing is a first step, where data is created and transformed in a format used to model training. That preprocessed data is then programmed for feature extraction. Next a pipeline is created for all ML algorithms namely, Naive Bayes, SVM, Logistic Regression, KNN, LGBM Classifier, Random Forest. An analysis of all algorithms' performance is conducted in a comparative study. Detailed analyses of each model are provided, with an emphasis on its performance. According to our experiment, Random Forest is an overfitted model for this purpose. With an accuracy of 99.09%, the SVM classifier performs best followed by the LGBM classifier with a 99.79% accuracy.},
        keywords = {News, Fake News identification, NLP, Machine Learning, Social media, Information legitimacy.},
        month = {},
        }

Cite This Article

  • ISSN: 2349-6002
  • Volume: 9
  • Issue: 5
  • PageNo: 775-782

Methodologies for Fake News Detection using Natural Language Processing and Machine Learning

Related Articles

Join Our IPN

IJIRT Partner Network

Submit your research paper and those of your network (friends, colleagues, or peers) through your IPN account, and receive 800 INR for each paper that gets published.

Join Now arrowright18x

Recent Conferences

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024 Last Date: 15th March 2024

Submit inquiry arrowright18x