Copyright © 2025 Authors retain the copyright of this article. This article is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
@article{167487, author = {KARNATI SRIKAR and Dr.M.Dhanalakshmi}, title = {Securing IoT : Real-Time Detection of Malicious Intrusions and Attacks in Cybersecurity Infrastructures}, journal = {International Journal of Innovative Research in Technology}, year = {2024}, volume = {11}, number = {3}, pages = {1109-1116}, issn = {2349-6002}, url = {https://ijirt.org/article?manuscript=167487}, abstract = {The project recognizes the pervasive threat of computer viruses, malware, and hostile attacks on computer networks, highlighting the critical role of intrusion detection as a proactive defense technology. The project introduces a novel approach based on deep learning to identify and mitigate cybersecurity vulnerabilities and breaches in IoT-driven cyber-physical systems, aiming for enhanced security measures. The project's objective is to elevate intrusion detection beyond the limitations of traditional systems by addressing issues like accuracy, detection effectiveness, and reducing false positives. This emphasizes the advancement and innovation in cybersecurity. To achieve the project's goals, the method employs a generative adversarial network, a cutting-edge deep learning technique. Additionally, it distinguishes itself by contrasting unsupervised and deep learning-based discriminative approaches, showcasing a comprehensive and effective approach to cybersecurity. In our project, we successfully implemented an ensemble method to boost predictive accuracy by integrating multiple individual models. Particularly noteworthy is the inclusion of a hybrid architecture, combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM), denoted as CNN+LSTM. This hybrid model achieved an impressive accuracy of 99% when applied to the KDD-Cup dataset, underscoring the efficacy of our ensemble technique for intrusion detection in IoT-based cybersecurity infrastructures.}, keywords = {Cybersecurity, Internet of Things, intrusion detection system (IDS), anomaly detection, security attacks, deep learning.}, month = {August}, }
Cite This Article
Submit your research paper and those of your network (friends, colleagues, or peers) through your IPN account, and receive 800 INR for each paper that gets published.
Join NowNational Conference on Sustainable Engineering and Management - 2024 Last Date: 15th March 2024
Submit inquiry